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Abstract. We have studied experimentally the uniaxial deformation of polydisperse 2D
monolayer liquid foams. The main topics addressed are: (i) the frequency of T1 events; (ii) the
trajectories of individual bubbles; (iii) the variation of topological disorder; (iv) the change in foam
energy (length of films) and in the orientation of the films. We compare the results for polydisperse
froths with those previously reported for a honeycomb froth.

1. Introduction

This paper describes and discusses results of an experimental study of the uniaxial deformation
(tension/compression) of 2D disordered froths containing a large number of bubbles. In another
paper [1] we will report experiments on froths consisting of a few bubbles, for which we
calculated the foam energy exactly.

Recent reviews of foam deformation include Kraynik [2] and Weaire and Fortes [3]. Most
of our understanding of foam deformation derives from computer simulations (e.g. [4–7]) and
a small number of experiments (e.g. [1, 8, 9]).

Two processes contribute to the deformation of a 2D dry froth, that is, one with a small
liquid fraction. At sufficiently small strains, films can stretch at constant topology, in a linear
elastic (reversible) deformation. In this regime, the foam energy varies parabolically with
strain, with a Young’s modulusY given by (e.g. [10, 11])

Y = λγ
a

(1)

whereγ is the film tension,a is a characteristic linear dimension of the bubbles andλ is a
constant that depends on the choice ofa and on the geometry and topology of the foam. For a
honeycomb frothλ = 1/(2

√
3), if a is set to the edge length of the hexagonal bubbles [9]. If

deformation occurs at constant bubble size, as in the experiments that we report in which the
foam behaves as incompressible, the Poisson ratio isν = 1 in 2D. This implies that a strain,ε,
in one direction causes a strain,−ε, in the perpendicular direction. Since a foam with random
oriented films is isotropic, the elastic behaviour of an (isotropic) incompressible foam is then
completely defined by a single elastic property, for example,Y .

At larger strains topology changes in the foam, through neighbour switching events (T1
events), see figure 1(a). The length of a particular edge (film) AB, separating cells A and B,
reduces to zero and the two cells A and B sharing that edge lose adjacency while the cells C
and D, originally at the vertices of AB, become adjacent [12]. For bubbles adjacent to walls,
the corresponding transformation is the T1′ transformation, shown in figure 1(b) [13]. A new
bubble becomes adjacent to a wall (and loses adjacency in the reverse T1′ transformation).
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Figure 1. (a) The T1 or neighbour switching transformation: second neighbour cells C and D
become adjacent while A and B lose adjacency. (b) The T1′ transformation of three cells near a
wall: cell A changes its neighbour relation with the wall.

T1 and T1′ events decrease the free energy (i.e. the total length of the bubble films) under
a fixed imposed strain and frequently propagate to adjacent bubbles leading to an avalanche of
successive T1 events [1, 6, 14]. T1 avalanches have also been observed in Langmuir monolayer
foams [15].

In an ordered honeycomb froth these avalanches result from the glide of a 5/7 pair (pair of
adjacent bubbles with five and seven sides) which is, in fact, a dislocation with a unit Burgers
vector [9]. The dislocations nucleate at the free surface of the honeycomb and then glide (in an
avalanche of T1 events), reflecting at the walls confining the foam sample (T1′ events). They
eventually leave the foam at its free surface, and the perfect honeycomb reappears.

In disordered froths, this description of T1 events and their avalanches in terms of
dislocation glide does not apply, because there is no reference configuration of the foam
in relation to which a dislocation defect can be defined.

Such irreversible deformation based on T1 events is also relevant to superplasticity (e.g.
[15, 16]). A superplastic material can be deformed by this mechanism to very large strains (up
to several thousand per cent) in tension. The grains repeatedly change neighbours and remain
approximately equiaxed.

Although we have a general picture of deformation by T1 events, a number of related
topics still need clarification. We undertook experiments on 2D foam deformation to improve
characterization and understanding of general deformation problems. We addressed the
following:

(1) The relation between the number of T1 events per bubble and the strain.

(2) The shuffling deformation causes in the arrangement of the bubbles and, in particular, the
trajectories of individual bubbles through a sample under deformation.

(3) The evolution with deformation of the topological disorder of the foam, measured by the
second moment,µ2, of the distribution of the number of sides,n.

(4) The change in energy (length of films) caused by film stretching and by T1 events.

(5) The change of orientation (rotation) of the films induced by uniaxial strain.

Our study applies to fairly dry foams. We made no attempt to investigate the effect of the
liquid fraction in the foam.
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Figure 2. Sequence of foam configurations in uniaxial deformation for the following values of the
bar separation,w: (a)w0(initial state) = 16 mm; (b)w = 32 mm; (c)w = 42 mm; (d)w = 15 mm
showing the evolution of the necked configuration.

2. Experiment

The foams used in the experiments were polydisperse monolayer foams [1, 9, 17] which consist
of a single layer of bubbles of different sizes sandwiched between the originally free surface
of the liquid forming the films and a parallel glass plate at a typical separation of 5 mm. The
foams are essentially 2D and are confined by two parallel bars in their plane (see figure 2), one
of which can be displaced to change the widthw of the sample. In the experiments reported
here, the number of bubbles in a sample was typically 100, with an average area per bubble
around 10 mm2. The number of bubbles did not change in an experiment. Deformation also
occured at constant bubble size (negligible coarsening).

We define the strainε as:

ε = ln
w

w0
(2)

wherew0 is the width of the foam in a reference state (usually the initial state of the as-prepared
foam) andw its current width, which is changed by displacing the moving bar. We measured
the widthw with a ruler (precision of 0.5 mm). The amount of deformation can also be
specified in terms of a nominal strain,εn = (w − w0)/w0. For small strains,εn ' ε. A
strainε in one direction of a 2D incompressible medium originates a strain−ε, in the direction
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perpendicular to it. The corresponding nominal strains are, however, not symmetrical. It is
therefore more convenient to use the logarithmic strainε.

The foams were photographed for measurement of the relevant quantities. The total length
of films was measured by image analysis methods in the skeletized froth. We also measured,
by hand, the number,P , of films intersected per unit length of straight lines parallel (P‖) and
perpendicular (P⊥) to the direction of displacement of the moving bar, using a set of parallel
equidistant lines.

3. Results

3.1. General observations

As the bar moves to change the separationw, T1 events are observed, frequently in the form
of avalanches. In addition to the T1 events the foam also deforms by changing the length
and orientation of films. The T1 avalanches propagate along an irregular path at a variable
angle to the confining bars and are reflected when they reach a bar, as do glide dislocations
in a honeycomb froth [9]. The T1 events may occur at the periphery of the foam or inside it;
avalanches also initiate either at the surface or in the bulk. This is distinct from the behaviour
of honeycombs in which all T1 processes initiate at the free surface [9].

Necking at the centre of the foam samples occurs both in tension and compression, as in
the honeycombs. In tension, deformation (i.e. the T1 events) then concentrates in the more and
more pronounced neck. Figures 2(a)–2(d) show necking in a 2D disordered foam deformed
in tension. If we compress the necked configuration obtained in tension, the neck becomes
less sharp but does not disappear (figure 2(d)). Why necking occurs is not clear, but, as in the
honeycomb [9], a necked configuration has smaller energy than one with fewer bubbles at the
bars, because of the positive binding energy of the bubbles to the bars.

3.2. Frequency of T1 events

We counted the total number of T1 events (isolated and in avalanches) by inspecting the
successive configurations of a foam under tension. Figure 3 shows the total (accumulated)
numbers of T1 (and T1′) events divided by the total numberN of bubbles in a foam sample
(foam sample 1) as a function ofε. The relation is linear, with

s

N
= kε (3)

wherek is a constant. In figure 3 the value ofk = 1.31. A similar linear relation was found
in experiments with monolayer Langmuir foams [15] withk = 0.15, and also in simulations
with k = 0.15 [7] andk = 0.5 [18], independent of strain rate. A considerable rate effect on
k was found in Potts model simulations [7].

We can explain the linear dependence (equation (3)) as follows. As for dislocation glide, a
T1 avalanche can be regarded as contributing to the global elongation (strain) with a unit glide
displacementb which can be taken as an average separation between the centres of adjacent
bubbles. Consider the deformation of a foam sample of widthw and lengthL (parallel
to the confining bars). When a T1 avalanche (‘dislocation’) traverses the foam (eventually
reflecting at the bars), the widthw increases byb sinα, where sinα is the average sine of the
angle between the avalanche path (glide direction) and the bars. The number,s, of bubbles
traversed by the ‘dislocation’ is the number of bubbles in the glide direction, of total length
L/ cosα. This number,s = L/(b cosα), is also the number of T1 events that occurred when
the ‘dislocation’ traversed the entire specimen, producing a strain increment1ε = b sinα/w.
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Figure 3. Number,s/N , of T1 and T1′ events per cell that occur in tensile deformation to a strain
ε. N is the total number of bubbles in the sample. The best fit straight line is drawn.

Figure 4. The observed path of individual bubbles in a tension/compression cycle. The upper
straight line represents the fixed bar. The initial position of a bubble is S. After tension toε = +1.1
the bubble is at I1. After compression toε = −0.4, the bubble reaches F. Successive locations in
tension are (•) and in compression are (×). The dashed lines are calculated trajectories from S
and I for homogeneous deformation of an incompressible medium.

Equation (3) then follows, withk = 2A/(b2 sin 2α), since the total number of bubbles in the
foam isN = Lw/A, whereA is the area per bubble, withA ' b2. For a honeycomb (edge
lengtha) we have:α = 60◦, b = a√3 andA = (3√3/2)a2; sok = 2, slightly larger than
the experimental value for the polydisperse foam, possibly due to the relatively largeα for the
honeycomb.

3.3. Shuffling of bubbles

If we identify the individual bubbles (not difficult in a polydisperse froth) we can follow
their location as a function ofε. Figure 4 gives examples of bubble trajectories in
tension/compression cycles. The trajectories are irregular and, in general, irreversible in a
cycle. In figure 4 we compare the trajectories with those (dashed lines) that would result if
deformation were homogeneous (see the appendix). In general, the actual trajectories deviate
considerably from those for homogeneous deformation as in figures 4(a) and 4(b), but there
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are exceptions (figure 4(c)). In narrow samples (few bubbles across the two bars) shuffling
may transfer bubbles from adjacency to one bar to adjacency to the other.

When we cyclically deform the foam between two strains,ε1 andε2, its configuration
at the extreme strains varies from cycle to cycle. Since the number of configurations of the
bubbles for a givenε (i.e. a given separationw) is finite, configurations will, in principle, repeat
over a sufficiently large number of cycles, but for many bubbles this number may be too large
to observe repetition.

3.4. Variation of topological disorder

With each bubble in a foam we associate a numbern, equal to its number of sides (or films)
for bulk bubbles. For bubbles at the bars or at the free surface,n is the number of neighbours
(films) plus 2 (or plus 3, for the few surface bubbles adjacent to the bars). The average value
of n for all cells varied between 5.94 and 5.99, below the ideal value, 6. We calculated the
second moment,µ2, defined as:

µ2 = 〈(n− 6)2〉. (4)

Figure 5 shows plots ofµ2 as a function ofε for two foam samples (samples 1 and 2). The
initial µ2 is larger for sample 1 (µ0

2 = 0.9 compared withµ0
2 = 0.4 for sample 2). The

samples experienced different tension/compression cycles (sample 1 was first deformed in
tension, while sample 2 was first deformed in compression). In both samples,µ2 fluctuates
with ε, but tends to increase in tension and decrease in compression. Whileµ2 shows a small
change withε in sample 1 (largerµ2), a clear increase inµ2 after one cycle occurs for sample 2.

For uniaxial deformation of a honeycomb froth, the bubbles remain hexagonal andµ2 = 0,
independent ofε. Deformation induced ordering of a disordered foam [4], with a consequent
decrease inµ2, was not experimentally observed. Indeed, calculations by Godrècheet al
[19] show that random T1 operations, successively applied to a trivalent network, induce a
stationary value ofµ2 = 4.2, far greater than the observedµ2 in the deformed disordered
froths, indicating that the edges AB involved in the T1 operations are not ‘chosen’ at random.
On the other hand, if the edge AB (figure 1(a)) is randomly chosen in a network with no
correlation between then values of adjacent cells (i.e. a gas network [20]),µ2 increases on
average by 2/N per T1 event, whereN is the total number of cells. This is because the change
in
∑
(n−6)2 due to the switching in figure 1(a) is 2(c +d − a− b)+ 2, wherea is the number

of sides of cell A, etc (see figure 1(a)). We must then conclude that the ‘switching edges’ AB
must connect predominantly cells A and B with many sides, such thatµ2 may even decrease in
a T1 event. This correlation will occur if the edges separating cells with many sides are shorter
on average, and therefore more prone to switching. This topic needs further investigation.

3.5. Total length of films

Figure 6 shows a plot ofLS (the total length of films per unit area) of sample 2 as a function of
strainε, over a large interval ofε, including two successive tension/compression cycles. The
length of films tends to increase in tension, dLS/dε > 0, and decrease in compression, with
LS approximately returning to its initial value after one cycle. On average,LS(ε) is nearly
linear, withLS increasing withε.

The total force required to deform the foam, per unit thickness of the monolayer, is:

F = Aγ

w

dLS
dε

(5)
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Figure 5. Variation of the second moment,µ2, with ε in a sequence of tension/compression to the
initial w0 followed by further compression/tension. S is the starting value and F is the final value
after the full cycle. I1 and I2 are the values at the end of the half-cycles. (a) Foam sample 1 (initial
µ2 = 0.9); (b) foam sample 2 (initialµ2 = 0.4). Different symbols are used for the experimental
points in different cycles.
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Figure 6. The total length,LS , of films divided by the total area, as a function of strain,ε, in
uniaxial deformation of foam sample 2. The foam, originally at S, was compressed to I1, then
extended to I2 and finally compressed toε ' −0.5. The inset is a plot ofLS(ε) for homogeneous
deformation of randomly oriented lines in an incompressible medium. Different symbols are used
for the experimental points in different cycles.

whereA is the total area of the foam sample andw is the width (w dε = dw). WhenF > 0
the force is tensile and whenF < 0 the force is compressive. SinceLS increases withε, the
force is always tensile (the confining bars attract each other).

The forceF is the resultant of the contractile tension of the films connected to the bars
(γ per film) and of the pressure forces acting on the bars. The pressure is larger on the side of
the froth, the difference being approximatelyγ /r, wherer is an average radius of curvature
of the extreme films at a bar. If̀ is the average bar length covered by one bubble, the total
forceF is:

F = Lγ

`

(
1− `

r

)
(6)

whereL is the length of each bar covered by the foam (L/` is the number of bubbles contacting
a bar). The sign ofF depends on whether`/r is larger or smaller than one. The average slope
of LS(ε) in the plot of figure 6 gives̀/r ∼= 0.9, which is reasonable.

Deformation by simple stretching of the films would lead to a dependence of1LS =
LS(ε) − LS(0) on ε2 for small ε, with 1LS = 1

2(Y/γ )ε
2; the Young’s modulusY is given

by equation (1). For a honeycomb, the result is1LS/LS(0) = ε2/8. A parabolic dependence
also arises in homogeneous deformation of a distribution of lines of random orientation, with
1LS/LS(0) = 3

4ε
2, as shown in the appendix (see inset in figure 6). However, this result does

not take into account the constraint of 120◦ triple junctions, that prevails in a slowly deforming
liquid foam. The observed linear variation ofLS (foam energy) withε is therefore a conse-
quence of the deformation mechanism based on T1 events constrained by 120◦ triple junctions.
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Figure 7. Evolution with strain,ε, of: (a)P‖ (•) andP⊥ (×) and (b)P‖/P⊥, for foam sample
2. P‖ andP⊥ are the numbers of films intersected per unit length of a family of straight lines,
respectively parallel and perpendicular to the direction of the imposed strain. The insets show the
evolution ofP‖,P⊥ (calculated for the experimentalLS0 = 3.04 cm−1) andP‖/P⊥ in homogeneous
deformation of lines of initial random orientation in an incompressible medium.
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3.6. Orientation of films

Figure 7(a) shows plots of the measured values ofP‖ andP⊥, the number of film intersections
per unit length of straight lines oriented parallel and perpendicular to the direction of bar
displacement, respectively, as a function ofε in a deformation cycle of foam sample 2.
Figure 7(b) is a plot ofP‖/P⊥.

Initially P‖/P⊥ is slightly above one, in spite of the fact that the bars constrain the films
to contact them at 90◦, which would decreaseP‖ andP⊥. In the first compression,P‖ andP⊥
change little with deformation. In subsequent tension,P‖ decreases andP⊥ increases more
noticeably. There is, in general, a tendency for the films to orient parallel to the direction of
elongation or, equivalently, for the bubbles to deform in the same way as their aggregate. This
conclusion is confirmed by the plot ofP‖/P⊥ in figure 7(b). Note thatP‖/P⊥ does not return
to the same value after a single cycle tension/compression.

The orientation effect observed is slight and much smaller than the re-orientation that
would occur in homogeneous uniaxial deformation of a distribution of lines drawn on an
incompressible medium (see the appendix). This is illustrated in the insets of figure 7.

4. Conclusions

Deformation of 2D monolayer liquid foams occurs essentially by neighbour switching events,
both inside the foam (T1 events) and at the confining walls (T1′ events). No transitions of
other types happened (e.g. associated with the liquid menisci [1]). The number of switchings
per bubble was proportional to the strainε and of the order ofε. For a given strain rate, ˙ε, the
average time interval between two T1 events involving a given bubble is thus around 0.2/ε̇ (four
bubbles are involved in a switching). The second moment of the distribution of the number of
sides of the bubbles did not change by deformation, implying that the switching events do not
occur at random edges, but rather at edges separating bubbles with many sides. The topological
changes accompany metric changes. The total length of films (proportional to foam energy)
increases in tension and decreases in compression, but the variation is small (small tensile
forces). Films tend to reorient under deformation, but the effect is much smaller than the one
that would result if deformation were homogeneous. Deformation scarcely affects the shape
of the individual bubbles which rearrange as if they were nearly rigid. In this rearrangement,
the bubbles nevertheless follow, in general, irregular trajectories that deviate from those for
homogeneous deformation.

Appendix

In homogeneous deformation of a 2D incompressible medium, the coordinatesx, y of a point
initially at x0, y0 are:

y = y0 eε

x = x0 e−ε (A1)

whereε is the strain(ε = ln y/y0 = lnw/w0); w is the width in the direction of the applied
strain.ε > 0 represents elongation along they axis.

The length of a short segment, ds0, at an angleθ0 with thex axis, changes to:

ds = ds0[e−2ε cos2 θ0 + e2ε sin2 θ0]1/2 (A2)

while its inclination changes toθ , with

tanθ = e2ε tanθ0. (A3)



Deformation of froths 7957

Consider a distribution of lines of length̀S(θ) dθ per unit area in the intervalθ, θ + dθ .
Assume that initiallylS(θ) = `S0 is independent ofθ . The initial total length per unit area is
LS0 = π`S0. After deformation the total length will be (equation (A2))

LS = `S0

∫ π/2

0
[e−2ε cos2 θ0 + e2ε sin2 θ0]1/2 dθ0. (A4)

Note thatLS(ε) = LS(−ε). Equation (A4) can assume the form

LS

LS0

= 2

π
eε
∫ π/2

0
[1− (1− e−4ε) sin2 α]1/2 dα (A5)

which is a standard complete elliptic integral. In the inset of figure 6 is shown a plot ofLS/LS0

as a function ofε.
The power series ofLS is

LS

LS0

= 1 +
3

4
ε2 + · · · . (A6)

We obtain the number of intersections of lines per unit length of straight lines in a given
direction by projecting the lines on that direction. Calculating cosθ and sinθ from equation
(A3) as a function ofθ0 andε we easily obtain

P‖ = 2LS0

π
e−ε

P⊥ = 2LS0

π
eε (A7)

and
P‖
P⊥
= e−2ε. (A8)

The insets in figure 7 show plots of equations (A7) and (A8).
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